[口头报告]基于改进(MGWR)降尺度方法的西南高原峡谷地区高分辨率栅格降水数据重建

基于改进(MGWR)降尺度方法的西南高原峡谷地区高分辨率栅格降水数据重建
编号:723 稿件编号:127 访问权限:仅限参会人 更新:2024-04-16 09:30:36 浏览:403次 口头报告

报告开始:2024年05月19日 15:38 (Asia/Shanghai)

报告时间:7min

所在会议:[S11] 主题11、地表过程与地貌 » [S11-5] 主题11、地表过程与地貌 专题11.5、专题11.6(19日下午,204)

暂无文件

摘要
High-spatiotemporal-resolution rainfall data are crucial for investigating local terrestrial water cycles. Although remote-sensing satellite precipitation products effectively reproduces spatial patterns of rainfall, it suffers from low spatial resolution. To overcome such limitations, a two-step downscaling approach is proposed here, primarily involving correction followed by downscaling. First, 80% of the meteorological-station data is utilized to calibrate the original Global Precipitation Measurement (GPM) data, enhancing the correlation between GPM and station data. Subsequently, utilizing elevation, slope, aspect, NDVI, wind direction, water vapor, and land surface temperatur, as well as slope and aspect correction factors, as independent variables, multiscale geographically weighted regression (MGWR) and temporal lag MGWR (TL-MGWR) models were constructed. We selected the model with higher accuracy on a monthly basis, and thereby obtaining higher-precision rainfall data. Through the aforementioned steps, downscaled monthly and daily precipitation data for the study area in 2022 at a spatial resolution of 0.01° were obtained.
Our findings indicate that selectively employing suitable MGWR or TL-MGWR models on a monthly basis can effectively downscale monthly GPM rainfall data in the study area. A consideration of the lag effects of NDVI between April‒June and October‒December improved the downscaling performance of the MGWR model. This downscaling process preserved the spatial distribution of the original GPM while enhancing the spatial resolution and had lower MAE , RMSE values, as well as exhibited smaller biases. The downscaled (original) monthly precipitation data exhibited a correlation of 0.94 (0.768), with an MAE of 16.233 mm/month, RMSE of 27.106 mm/month, and bias of −0.043. Similar enhancement was likewise noted in daily precipitation, displaying a correlation coefficient of 0.863 (0.318) for downscaled (original) data, and a RMSE of 3.209 mm/day, MAE of 1.082 mm/day, and bias of −0.06. In summary, the data after downscaling, both for monthly and daily datasets, was markedly improved in accuracy. The proposed downscaling method is applicable for reconstructing high-resolution grid data at monthly and daily temporal scales in the complex terrain of the southwest China highland canyon area.

 
关键字
GPM; Downscaling; MGWR; Temporal lag; Calibration; Meteorological stations; Southwest China
报告人
王莉红
硕士研究生 西南大学

稿件作者
王莉红 西南大学
李月臣 西南大学
甘宇诗 西南大学
赵龙 西南大学
樊磊 西南大学
秦伟 中国水利水电科学研究院
丁琳 中国水利水电科学研究院
发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 0592-2880181 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订