[口头报告]Biogeomorphological niche of a landform: Machine learning approaches reveal controls on the geographical distribution of Nitraria tangutorum nebkhas

Biogeomorphological niche of a landform: Machine learning approaches reveal controls on the geographical distribution of Nitraria tangutorum nebkhas
编号:633 稿件编号:2708 访问权限:仅限参会人 更新:2024-04-10 22:12:51 浏览:477次 口头报告

报告开始:2024年05月19日 11:22 (Asia/Shanghai)

报告时间:7min

所在会议:[S11] 主题11、地表过程与地貌 » [S11-3] 主题11、地表过程与地貌 专题11.3、专题11.4(19日上午,204)

暂无文件

摘要
Nebkhas are distinctive biogeomorphological landforms prevalent in global drylands and coastal environments. They play a crucial role in supporting local biodiversity and preventing land desertification, and often serve as an indicator of local environmental change. Despite their significance, the environmental factors that affect their geographical distribution and how they respond to climate change have not been fully explored. This study represents a novel application of machine-learning models to quantifying the biogeomorphological niche of Nitraria nebkhas in northern China and simulating their geographical distribution under future climate change conditions. Findings underscore that climatic variables influence the growth of formative shrub species on nebkhas, while climate, soil and geomorphological conditions, along with their spatial configuration, determine the probability of nebkha occurrence. Predictions under medium and high greenhouse gas emission scenarios indicate a northward shift in the potential distribution of nebkhas in northern China by the end of the century, accompanied by a decrease in the south due to rising temperatures. Given the potential impact of nebkha field degradation on biodiversity and soil hydrological conditions, adaptive land-use strategies should be designed to protect nebkhas and mitigate the impact of climate change. Our study not only provides valuable insights for informing policy-making and conservation initiatives, but also serves as an example for quantifying the niche of biogeomorphological landforms and simulating their dynamics by integrating machine-learning approaches into empirical geomorphological studies.
关键字
biogeomorphological niche,climate change,machine learning,nebkha,potential distribution
报告人
张昊辰
硕士研究生 南京大学

稿件作者
张昊辰 南京大学
李世寒 南京大学
MasonJoseph A. University of Wisconsin–Madison
YizhaqHezi Ben-Gurion University of the Negev
桂东伟 中国科学院新疆生态与地理研究所
徐志伟 南京大学
发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 0592-2880181 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订