[张贴报告]Spatiotemporal Convolutional Approach for the Short-Term Forecast of Hourly Heavy Rainfall Probability Integrating Numerical Weather Predictions and Surface Observations

Spatiotemporal Convolutional Approach for the Short-Term Forecast of Hourly Heavy Rainfall Probability Integrating Numerical Weather Predictions and Surface Observations
编号:463 稿件编号:4185 访问权限:仅限参会人 更新:2024-04-10 20:30:18 浏览:823次 张贴报告

报告开始:2024年05月18日 10:41 (Asia/Shanghai)

报告时间:1min

所在会议:[SP] 张贴报告专场 » [sp12] 主题12、大气物理与气象气候

暂无文件

摘要
The accurate prediction of short-term rainfall, and in particular the forecast of hourly heavy rainfall (HHR) probability, remains challenging for numerical weather prediction (NWP) models. Here, we introduce a deep learning (DL) model, PredRNNv2-AWS, a convolutional recurrent neural network designed for deterministic short-term rainfall forecasting. This model integrates surface rainfall observations and atmospheric variables simulated by the Precision Weather Analysis and Forecasting System (PWAFS). Our DL model produces realistic hourly rainfall forecasts for the next 13 hours. Quantitative evaluations show that the use of surface rainfall observations as one of the predictors achieves higher performance (threat score) with 263$\%$ and 186$\%$ relative improvements over NWP simulations for the first 3 hours and the entire forecast hours, respectively, at a threshold of 5 mm/h. Noted that the optical-flow method also performs well in the initial hours, its predictions quickly worsen in the final hours compared to other experiments. The machine learning model, LightGBM, is then integrated to classify HHR from the predicted hourly rainfall of PredRNNv2-AWS. The results show that PredRNNv2-AWS can better reflect actual HHR conditions than PredRNNv2 and PWAFS. A representative case demonstrates the superiority of PredRNNv2-AWS in predicting the evolution of the rainy system, which substantially improves the accuracy of the HHR prediction. A test case involving the extreme flood event in Zhengzhou exemplifies the generalizability of our proposed model. Our model offers a reliable framework to predict target variables that can be obtained from numerical simulations and observations, e.g., visibility, wind power, solar energy, and air pollution.
关键字
rainfall,Deep learning,Probability forecasts,Nowcasting
报告人
郑玉
助理研究员 南京气象科技创新研究院

稿件作者
郑玉 南京气象科技创新研究院
刘希 南京气象科技创新研究院
发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 0592-2880181 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订