[口头报告]Comparison of Soil Organic Carbon Prediction Methods and Accurate Mapping in Typical Black Soil Areas of Liaoning Province, Northeast China

Comparison of Soil Organic Carbon Prediction Methods and Accurate Mapping in Typical Black Soil Areas of Liaoning Province, Northeast China
编号:4567 稿件编号:1749 访问权限:仅限参会人 更新:2024-04-16 14:56:39 浏览:473次 口头报告

报告开始:2024年05月19日 09:02 (Asia/Shanghai)

报告时间:3min

所在会议:[S18] 主题18、土壤科学与环境健康 » [S18-2] 主题18、土壤科学与环境健康 专题18.2、专题18.5、专题18.3(19日上午,4F观海厅2)

暂无文件

摘要
Soil organic carbon (SOC) plays an important role in terrestrial ecosystems. In this study, the typical black soil area of Tieling City, Liaoning Province, was used as the study area, and digital soil mapping (DSM) technology was utilized to estimate the SOC content in Tieling City. To improve the accuracy and reduce the uncertainty of predicting the organic carbon content of topsoil (0-20 cm) in the plains region by applying machine learning methods and adding remote sensing variables to the traditional predictors.Based on 2708 soil samples and the corresponding environmental covariates, the spatial distribution of organic carbon content in topsoil (0-20 cm) in Tieling City in 2021 was mapped for the first time using ordinary kriging, regression kriging and random forest models. The primary environmental variables influencing the variability of SOC content are mean annual temperature, altitude, mean annual precipitation and vegetation cover and the interaction of the two factors enhances the effect of a single factor on the spatial heterogeneity of SOC content. We then applied the RF model to predict the spatial distribution of SOC content in 1991 and 2021 based on natural environmental variables and remote sensing variables. In the past three decades, the SOC content has always been higher in the eastern region than in the western region. The SOC content in the eastern and northern part of the study area showed an increasing trend with an area of 8245.8522 km2, while the SOC content in the central and southern part of the study area showed a decreasing trend with an area of 4717.089km2 and average organic carbon content increased from 21.88g/kg to 22.90g/kg, compared with 2021. Our high-resolution and high-precision estimation of the spatial distribution of SOC can provide a basis and reference for regional soil quality improvement and ecosystem optimization.
 
关键字
Soil organic carbon; Digital soil mapping; Dynamic changes; spatial heterogeneity
报告人
邵天意
博士研究生 沈阳农业大学

稿件作者
邵天意 沈阳农业大学
钱凤魁 沈阳农业大学
发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 0592-2880181 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订