[特邀报告]Fast POPs Identification Using No- or Low-Code Machine Learning

Fast POPs Identification Using No- or Low-Code Machine Learning
编号:4324 稿件编号:2797 访问权限:仅限参会人 更新:2024-04-15 20:39:37 浏览:477次 特邀报告

报告开始:2024年05月19日 08:52 (Asia/Shanghai)

报告时间:10min

所在会议:[S5] 主题5、环境科学 » [S5-3] 主题5、环境科学 专题5.8、专题5.11(19日上午,307)

暂无文件

摘要
Effectively identifying persistent organic pollutants (POPs) with extensive organic chemical datasets poses a formidable challenge but is of utmost importance. Leveraging machine learning techniques can enhance this process, but previous models often demanded advanced programming skills and high-end computing resources. In this study, we harnessed the simplicity of PyCaret, a Python-based package, to construct machine-learning models for POP screening based on 2D molecular descriptors. We compared the performance of these models against a deep convolutional neural network (DCNN) model. Utilising minimal Python code, we generated several models that exhibited superior or comparable performance to the DCNN. The most outstanding performer, the Light Gradient Boosting Machine (LGBM), achieved an accuracy of 96.20%, an AUC of 97.70%, and an F1 score of 82.58%. This model outshone the DCNN model. Furthermore, it excelled in identifying POPs within the REACH PBT and compiled industrial chemical lists. Our findings highlight the accessibility and simplicity of PyCaret, requiring only a few lines of code, rendering it suitable for non-computing professionals in environmental sciences. The ability of low code machine learning tools (e.g. PyCaret) to facilitate model comparison and interpretation holds promise, encouraging prompt assessment and management of chemical substances.
 
关键字
POPs,machine learning,Risk assessment,QSAR
报告人
陈长二
系主任 华南师范大学

稿件作者
陈长二 华南师范大学
发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 0592-2880181 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订