[口头报告]Moisture-independent prediction method for weather-driven dynamics of soil desiccation cracks: Insights from multi-input long short-term memory neural networks (M-LSTM)

Moisture-independent prediction method for weather-driven dynamics of soil desiccation cracks: Insights from multi-input long short-term memory neural networks (M-LSTM)
编号:4288 稿件编号:4436 访问权限:仅限参会人 更新:2024-04-15 09:16:03 浏览:333次 口头报告

报告开始:2024年05月20日 10:52 (Asia/Shanghai)

报告时间:8min

所在会议:[S3] 主题3、地质灾害与工程地质 » [S3-5] 主题3、地质灾害与工程地质 专题3.12、专题3.13、专题3.15(20日上午,308)

暂无文件

摘要
Accurately predicting weather-driven dynamics of soil desiccation cracks is crucial for quantifying the degradation of soil mechanical and hydrological properties, but it remains challenging and unresolved due to the complex dynamic features of desiccation cracks with different climate variables. Existing physical methods often adopted moisture-dependent, single-variable and fixed constitutive functions to describe the crack dynamics, always leading to insufficient prediction results. In this study, a novel moisture-independent deep learning model incorporating different climate variables was proposed to predict the dynamic changes of desiccation cracks by constructing multi-input-output long short-term memory neural networks (M- -LSTM). A soil column test under long-term artificial weather conditions was conducted to obtain temporal changes of climate variables and crack geometric parameters for model training and validation. Then, the performance of M-LSTM was compared with existing empirical, theoretical and numerical models via different criteria, including MSE, MAE, RMSE and R2. The results demonstrate that the proposed M-LSTM effectively captures the dependency between the dynamic changes of desiccation cracks and climate variables, stably and almost perfectly predicting the variations in crack density and width as the climate variables change. For instance, the overall MAE of M-LSTM dropped to 0.03, which is 32.7%, 28.8% and 18.9% away from the prediction results using empirical, theoretical and numerical models, respectively. Our further discussions on the performance of single-input LSTM (without considering climate variables) and single-output M-LSTM (with only one crack geometric parameters being predicted) reveal that reducing input variables only slightly improve the prediction performance. It is still recommended to use M-LSTM to predict weather-driven dynamics of soil desiccation cracks due to its better generalization ability, robustness, practicality and interpretability.
关键字
Desiccation cracks; Weather-driven dynamics; LSTM; Climate variables; Moisture-independent prediction method
报告人
罗易
博士后 中国地质大学(武汉)

稿件作者
罗易 中国地质大学(武汉)
发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 0592-2880181 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订