[口头报告]考虑预报不确定性的水库防洪多目标鲁棒优化调度研究

考虑预报不确定性的水库防洪多目标鲁棒优化调度研究
编号:4018 访问权限:仅限参会人 更新:2024-04-14 16:22:16 浏览:427次 口头报告

报告开始:2024年05月19日 11:03 (Asia/Shanghai)

报告时间:10min

所在会议:[S14] 主题14、水文地球科学 » [S14-4] 主题14、水文地球科学 专题14.11、专题14.17(19日上午,B2鹭江厅VIP3)

暂无文件

摘要
Informing reservoirs with forecasts is highly important for real‐time flood control. This study proposed a forecast‐informed methodology framework for reservoir flood control operation under uncertainty. A new c ombination of two post‐processing methods, that is, the Cloud model and error‐based copula functions, were developed to merge individual AI‐based forecasts to ensemble flood forecasts, so called stochastic errors‐based Cloud (SE‐Cloud). A multi‐objective robust optimization model (MRO) integrating the risk, resilience, and vulnerability was then proposed to tackle flood control problems under ensemble forecasts; for comparison, a two‐objective stochastic optimization model (TSO) was developed to minimize the expected highest reservoir level and peak release. The proposed methodology was applied to the Lishimen reservoir in the Shifeng River subbasin, China, aiming to comprehensively verify the relationships among deterministic forecasts, ensemble forecasts, and flood control performance. Results showed that the Cloud model could effectively integrate different models and improve forecast accuracy. But a higher deterministic forecast quality did not consistently result in improved flood control performance. SE‐Cloud could capture the peak flow and effectively characterize forecast uncertainties and increased hypervolume values by 13.14%–39.65% compared to the Cloud model, indicating the superiority of ensemble forecasts in generating robust solutions over individual deterministic forecasts. MRO released more inflow than TSO, decreasing the expected highest water level by 0.05 m and incrementing the expected peak release by 4.29%. However, with downstream resilience value remaining at zero, it is demonstrated that MRO improving upstream vulnerability did not necessarily diminish resilience. The enhanced robustness highlights the potential of AI‐based ensemble forecasts in flood control.
关键字
机器学习,洪水预报,防洪调度,鲁棒优化
报告人
郭玉雪
特聘研究员 浙江大学

发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 0592-2880181 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订