[快闪报告]A new robust feature selection method for paddy rice identification in cloudy and rainy areas

A new robust feature selection method for paddy rice identification in cloudy and rainy areas
编号:3299 稿件编号:3067 访问权限:仅限参会人 更新:2024-04-13 11:50:33 浏览:453次 快闪报告

报告开始:2024年05月19日 17:30 (Asia/Shanghai)

报告时间:5min

所在会议:[S7] 主题7、遥感与地理信息科学 » [S7-7] 主题7、遥感与地理信息科学 专题7.11(19日下午,301)

暂无文件

摘要
Timely and accurate mapping of rice cultivation is crucial for ensuring global food security and monitoring water usage. Feature selection methods play critical roles in identifying and mapping paddy rice as they reduce redundant information in feature subsets and improve computational efficiency. However, the optimal feature sets selected by existing feature selection methods still encounter challenges such as redundant information or local optimal, limiting their accuracy in rice identification. To address these issues, we developed a novel hierarchical clustering sequential forward selection (HCSFS) method to accurately determine the optimal feature set for paddy rice identification. HCSFS first employs hierarchical clustering to classify all features into different classes. Each independent feature class is filtered by the existing advanced sequential forward selection (SFS) method. Then, all the filtered features are merged to select the optimal feature set for rice identification. The proposed HCSFS method was tested on 8 common machine learning classifiers. The results show that, compared with existing feature selection methods, the feature subset obtained by HCSFS reduced redundant information and demonstrated superior performance. Specifically, the optimal feature set selected by HCSFS yielded the highest accurate rice map, with overall accuracy exceeding 0.95 and Kappa exceeding 0.83 across all classifiers. In addition, this paper found that in regions of southern China with cloudy and rainy weather and complex crop planting structures, the combination of the rice growth period images with LSWI, SWIR2, and RE2 can improve the accuracy of paddy rice identification or mapping. The case validated the applicability and efficiency of the HCSFS method in rice identification for regions with cloudy and rainy and implied the potential use in other similar or less complex regions.
关键字
Paddy rice; Sentinel-2; Mapping; Feature selection; HCSFS; Cloudy and rainy areas
报告人
段星印
硕士研究生 四川农业大学

稿件作者
吴小波 四川农业大学
段星印 四川农业大学
发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 0592-2880181 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订