[快闪报告]Assessing the potential of multi-source remote sensing data for soil organic matter mapping in hilly and mountainous areas

Assessing the potential of multi-source remote sensing data for soil organic matter mapping in hilly and mountainous areas
编号:3298 稿件编号:3111 访问权限:仅限参会人 更新:2024-04-13 11:50:33 浏览:423次 快闪报告

报告开始:2024年05月19日 17:35 (Asia/Shanghai)

报告时间:5min

所在会议:[S7] 主题7、遥感与地理信息科学 » [S7-7] 主题7、遥感与地理信息科学 专题7.11(19日下午,301)

暂无文件

摘要
Soil organic matter (SOM) is a significant carbon pool on a global scale. Accurately mapping the spatial distribution of the SOM is crucial for achieving the “double carbon target” and promoting sustainable agricultural development. However, the impact of using diverse remote sensing data sources on high-precision SOM mapping in hilly and mountainous areas remains unclear. In this study, the Jiangyou City, located in Sichuan Province, China, was chosen as a typical example of hilly and mountainous regions. We devised 15 distinct feature combinations by utilizing three remote sensing variables (Sentinel-1, Sentinel-2, and Landsat-8) along with DEM data. Next, the Boruta algorithm was employed for feature selection. Finally, the RF, SVR, Cubist, and INLA-SPDE models were adopted to create spatially detailed distribution maps of SOM for the region, and an uncertainty analysis was performed on the SOM mapping results. The results indicate that: (1) the INLA-SPDE model, which integrates both data information and spatial structure, achieves the highest ac-curacy and the less uncertainty in SOM mapping, with an R2 of 0.647 and an RMSE of 4.227 g/kg; (2) optical images are more important than SAR images, but their combination enhances model accuracy. Specifically, Sentinel-2 data significantly influenced SOM prediction in hilly and mountainous areas, followed by Landsat-8 data; (3) the predicted spatial distribution patterns of SOM by the four models are similar, indicating lower SOM content in the southwest, higher SOM content in the central and northeast. This study serves as an important reference for future large-scale and high-spatial SOM prediction and verifies the importance of the spatial resolution to the SOM prediction accuracy in hilly and mountainous regions.
 
关键字
Soil organic matter; Multi-source remote sensing; Hilly and mountainous areas; IN-LA-SPDE
报告人
彭丽
硕士研究生 四川农业大学

稿件作者
彭丽 四川农业大学
吴小波 四川农业大学
发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 0592-2880181 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订