[张贴报告]GloUTCI-M: A Global Monthly 1 km Universal Thermal Climate Index Dataset from 2000 to 2022

GloUTCI-M: A Global Monthly 1 km Universal Thermal Climate Index Dataset from 2000 to 2022
编号:2604 稿件编号:3845 访问权限:仅限参会人 更新:2024-04-12 15:15:08 浏览:393次 张贴报告

报告开始:2024年05月18日 08:29 (Asia/Shanghai)

报告时间:1min

所在会议:[SP] 张贴报告专场 » [sp7] 主题7、遥感与地理信息科学

暂无文件

摘要
Climate change has precipitated recurrent extreme events and emerged as an imposing global challenge, exerting profound and far-reaching impacts on both the environment and human existence. The Universal Thermal Climate Index (UTCI), serving as an important approach to human comfort assessment, plays a pivotal role in gauging how the human adapts to meteorological conditions and copes with thermal and cold stress. However, the existing UTCI datasets still grapple with limitations in terms of data availability, hindering their effective application across diverse domains. We have produced the GloUTCI-M, a monthly UTCI dataset boasting global coverage, an extensive time series spanning from March 2000 to October 2022, and a high spatial resolution of 1km. This dataset is the product of a comprehensive approach leveraging multiple data sources and advanced machine learning models. Our findings underscore the superior predictive capabilities of CatBoost in forecasting UTCI (MAE = 0.747°C, RMSE = 0.943°C, R2 = 0.994) when compared to machine learning models such as XGBoost and LightGBM. Utilizing GloUTCI-M, the geographical boundaries of cold stress and thermal stress areas on a global scale were effectively delineated. Over the span of 2001 to 2021, the mean annual global UTCI registers at 17.24°C, with a pronounced upward trend. Countries like Russia and Brazil emerge as key contributors to the mean annual global UTCI increase, while countries like China and India exert a more inhibitory influence on this trend. Furthermore, in contrast to existing UTCI datasets, GloUTCI-M excels at portraying UTCI distribution at finer spatial resolutions, augmenting data accuracy. This dataset enhances our capacity to evaluate thermal stress experienced by the human, offering substantial prospects across a wide array of applications. The GloUTCI-M is publicly available at https://doi.org/10.5281/zenodo.8310513 (Yang et al., 2023).
关键字
UTCI dataset,human thermal stress,machine learning
报告人
杨智威
博士研究生 北京大学

稿件作者
杨智威 北京大学
彭建 北京大学
刘焱序 北京师范大学
发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 0592-2880181 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订