[张贴报告]基于时序深度学习的中国森林生态系统 净CO2交换模拟研究

基于时序深度学习的中国森林生态系统 净CO2交换模拟研究
编号:2546 稿件编号:1891 访问权限:仅限参会人 更新:2024-04-12 15:01:16 浏览:382次 张贴报告

报告开始:2024年05月18日 08:35 (Asia/Shanghai)

报告时间:1min

所在会议:[SP] 张贴报告专场 » [sp7] 主题7、遥感与地理信息科学

暂无文件

摘要
       森林生态系统在陆地碳循环中发挥重要作用,但目前全国森林碳汇估算精度仍存在较大不确定性,准确估算站点到区域尺度的森林碳汇,对于开展国家碳盘点工作和气候变化研究具有重要意义。长短期记忆网络(LSTM)是一种考虑时间记忆效应的深度学习算法,在提高生态系统净碳交换(NEE)模拟精度方面有巨大潜力,有望用于改善区域尺度森林碳汇评估。
       本研究收集了全国11个站点共787个站点-月的长期涡度相关观测数据以及配套的气象和多源遥感数据,此外,特别引入了全国森林年龄分布图,研究基于LSTM模型提高中国森林NEE模拟精度的方法。研究发现,根据森林功能类型(PFT)建立不同的NEE估算模型可以提高NEE的模拟精度,以基于涡度相关数据估算的NEE(i.e., EC-NEE)为标准,混交林估算模型在区分PFT前后,NEE模型模拟结果与EC-NEE的决定系数R2从0.34提高到了0.84,即使是效果不显著的常绿针叶林,R2也从0.34提高到了0.44。基于LSTM的NEE估算模型考虑了14个与NEE相关的变量,在大多数情况下,SIF是月尺度NEE估算最重要的影响因子,其次是FAPAR和气压(Pres)。值得注意的是,研究发现,在未区分PFT时,林龄(Age)对NEE模拟精度影响较大;但区分PFT建模后,林龄对NEE模拟精度改善不显著。本研究为融合多源数据模拟中国森林净碳通量提供了新的方法,有助于更好地理解中国森林生态系统在陆地碳循环中的作用。
 
关键字
森林生态系统;净生态系统碳交换(NEE);长短期记忆网络(LSTM);涡度相关数据;林龄;中国
报告人
吴晶晶
硕士研究生 北京建筑大学

稿件作者
吴晶晶 北京建筑大学
吴巧丽 北京建筑大学
发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 0592-2880181 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订