[口头报告]A novel approach for snow depth retrieval in forested areas by integrating horizontal and vertical canopy structures information

A novel approach for snow depth retrieval in forested areas by integrating horizontal and vertical canopy structures information
编号:2489 稿件编号:3605 访问权限:仅限参会人 更新:2024-04-12 13:31:09 浏览:481次 口头报告

报告开始:2024年05月20日 11:05 (Asia/Shanghai)

报告时间:10min

所在会议:[S17] 主题17、冰冻圈科学 » [S17-4] 主题17、冰冻圈科学 专题17.8、专题17.11(20日上午,209)

暂无文件

摘要
Snow cover in forests plays a crucial role in protecting the forest ecosystem, maintaining stability, and providing essential resources, particularly in snow-affected regions at mid- to high-latitudes. However, the presence of forests significantly impacts the accuracy of snow depth retrievals from passive microwave remote sensing. A new index, called normalized difference maximum stem volume (NDMSV), has been constructed by integrating the canopy height and tree cover to develop a novel algorithm for passive microwave snow depth retrieval. By considering both the vertical and horizontal canopy structures, NDMSV can depicts forest density in a more detailed manner than just fraction of forest cover. The validation and comparison of our work in forest perspective demonstrate that the accuracy of snow depth retrieval algorithm developed by us is higher than the algorithm which only consider forest cover fraction, especially in moderately dense or sparsely forested areas, against in situ snow depth data. In addition, our results exhibit high accuracy regardless of canopy height. Spatial-temporal comparison results indicate that our study exhibits the higher retrieval accuracy in the Northeast China and Eastern Siberian Mountains when validated and compared against in situ snow depth, as well as other algorithms and datasets such as ERA5, ERA5-Land and Globsnow. For different snow season, our results perform well during the months with more stable snowpack in the Northeast China, the Central Siberia Plateau, and Eastern Siberian Mountains. Moreover, the accuracy of our algorithm is significantly accurate not only in forested areas, but also in other land types, including farmland and grassland. In conclusion, NDMSV index can effectively capture the forest characteristics and helpful in enhancing snow depth retrieval accuracy.
 
关键字
Snow depth; Forest; Passive microwave remote sensing; CETB;
报告人
岳珊娜
博士研究生 中国科学院西北生态环境资源研究院

稿件作者
岳珊娜 中国科学院西北生态环境资源研究院
车涛 中国科学院西北生态环境资源研究院
发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 0592-2880181 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订