[口头报告]Improving Gross Primary Productivity Estimation of Main Vegetation through Biome-BGC Modeling with SIF Integration in Southwest China

Improving Gross Primary Productivity Estimation of Main Vegetation through Biome-BGC Modeling with SIF Integration in Southwest China
编号:1491 稿件编号:3386 访问权限:仅限参会人 更新:2024-04-11 16:32:22 浏览:420次 口头报告

报告开始:2024年05月19日 10:35 (Asia/Shanghai)

报告时间:10min

所在会议:[S4] 主题​4、生态与可持续发展 » [S4-6] 主题4、生态与可持续发展 专题4.15(19日上午,215)

暂无文件

摘要
In the simulation studies of carbon cycling processes, accurate estimation of Gross Primary Productivity (GPP) of terrestrial ecosystems is pivotal. However, the simulation accuracy for Evergreen Broadleaf Forests (EBF) and Evergreen Shrubs (ES) requires enhancement. This study focuses on these two typical vegetation types in the southwestern China. We refined the phenology module of the Biome-BGC model and optimized its parameters to boost GPP simulation accuracy. Solar-induced fluorescence (SIF) data, which is sensitive to photosynthetic activity, was employed to replace the meteorologically-based phenology module in the original model. SIF data can more directly measure the photosynthetic activity of plants, which is closely related to GPP changes, and the calculated phenology information is more accurate than that calculated from traditional meteorological data. We then used the Embedding-Tree-Parzen-Estimator (ETPE) optimization algorithm, which is a Bayesian optimization algorithm, for parameter tuning. Calibration and validation of the model were conducted using Eddy covariance (EC) measurements from four towers. The optimized model exhibited improved accuracy in GPP simulations compared to the original. For EBF, simulation accuracy increased from R² = 0.34 and RMSE = 2.40 g/m²/day to R² = 0.42 and RMSE = 1.64 g/m²/day. For ES, accuracy improved from R² = 0.65 and RMSE = 1.20 g/m²/day to R² = 0.77 and RMSE = 0.66 g/m²/day. In conclusion, by integrating the SIF-based phenology module with the Biome-BGC model and optimizing parameters, the model exhibited better adaptability to the complex vegetation environment in the southwestern China, thereby effectively simulating GPP data. This study provides a robust method and basis for accurately simulating GPP values of the main vegetation types in the southwestern region.
 
关键字
Biome-BGC,GPP,SIF,Phenology,Southwestern China
报告人
刘恒源
硕士研究生 西南大学

稿件作者
李月臣 西南大学
刘恒源 西南大学
发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 0592-2880181 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订