基于近十年的综合研究看源自福岛核事故的钚同位素分布和环境影响
编号:1082
稿件编号:4088 访问权限:仅限参会人
更新:2024-04-29 13:42:49
浏览:454次
口头报告
摘要
This paper reviews the current knowledge on plutonium (Pu) isotopic composition (the atom or activity ratios) and activity concentrations of 238Pu, 239Pu, 240Pu, and 241Pu resulting from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011. In this critical review, we document the characteristic values of Pu atom or activity ratios (fingerprints) and present their spatial distributions around the FDNPP site. Based on multiple Pu fingerprints (238Pu/239+240Pu activity ratio, 240Pu/239Pu atom ratio, and 241Pu/239Pu atom ratio), we clarify that Pu contamination from the FDNPP accident occurred in a restricted terrestrial area, while Pu in the Northwest Pacific Ocean is still predominately sourced from the Pacific Proving Grounds (PPG) and global fallout. Using a simple two end–member mixing model, we calculate average contributions of Pu from the FDNPP accident of 13 ± 20% (n = 180) in soil samples, 55 ± 32% (n = 38) in leaf litter samples, and 67 ± 26% (n = 129) in air dust/black substances. In the marine environment, the PPG source average contributions are 45 ± 15% (n = 76) in seawater and 42 ± 12% (n = 48) in sediments. The spatial distributions of Pu atom or activity ratios based on existing studies suggest that: 1) in the terrestrial region investigated 80 km northwest of the FDNPP site, the Pu contamination is mainly observed in an area within a 50 km distance, and 2) in the terrestrial region investigated 60 km southwest of the FDNPP site, the Pu contamination is mainly observed in an area within a 30 km distance. Studies of Cs-bearing radioactive particles indicate that Pu occurs as Pu oxide, and the fuel fragments containing Pu that were released from the reactors to the surrounding environment are associated with micron-scale Cs-bearing radioactive particles. We note that the fractionation between Pu and other radionuclides occurred after release. These new findings about the Pu fingerprints around the FDNPP site will help researchers to establish a reference background database for future environmental risk assessment and geochemical study there.
Keywords: Plutonium, Fukushima Daiichi Nuclear Power Plant accident, Pacific Proving Grounds, Global fallout, Northwest Pacific Ocean.
关键字
放射性核素,吸附,迁移,近海,90Sr,137Cs
稿件作者
陈吉生
汕头大学
吴俊文
汕头大学
郑雪敏
汕头大学
发表评论