[口头报告]资源型城市可持续发展:指标、时空模式及应用

资源型城市可持续发展:指标、时空模式及应用
编号:1074 稿件编号:2015 访问权限:仅限参会人 更新:2024-04-19 11:32:14 浏览:451次 口头报告

报告开始:2024年05月19日 14:40 (Asia/Shanghai)

报告时间:10min

所在会议:[S7] 主题7、遥感与地理信息科学 » [S7-8] 主题7、遥感与地理信息科学 专题7.12、专题7.5(19日下午,303)

暂无文件

摘要
Resource-based cities serve as crucial strategic bases for energy security in China. However, as urban resources gradually deplete, these cities confront the dilemma of the resource curse, precipitating a severe development crisis and rendering sustainable development attainment more challenging than for other cities. The formulation of Sustainable Development Goals (SDGs) presents a novel framework guiding the trajectory of resource-based cities. Based on the prefecture-level data spanning from 2006 to 2020 in China, this paper used principal component analysis (PCA) to construct a SDGs-oriented sustainable development indicator system for resource-based cities. Further spatial analysis and cluster analysis show that: (1) The sustainable development of resource-based cities show a balanced tendency in space, and regenerative cities have the best performance. (2) A significant positive spatial correlation is observed in the sustainable development of resource-based cities, underscored by a discernible increase in spatial convergence and a concomitant decrease in spatial agglomeration of sustainable development capabilities over time. (3) Despite this, considerable disparities persist across various domains of sustainable development among resource-based cities, with many facing with high carbon emissions. Consequently, the implementation of multifaceted policies and industrial transformation initiatives is imperative to strike a balance in different domains and facilitate carbon reduction. This paper offers an in-depth exploration of the spatiotemporal patterns characterizing resource-based cities, which can provide some new insights conducive to fostering their sustainable development.
 
关键字
resource-based cities; sustainable development; spatiotemporal patterns; principal component analysis(PCA); cluster analysis
报告人
钟琪
硕士研究生 中国矿业大学

稿件作者
钟琪 中国矿业大学
李桂娥 中国矿业大学
LiChunying China University of Mining and Technology
JiaoYangyang China University of Mining and Technology
LIJie China University of Mining and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 0592-2880181 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订